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Abstract

Modeling occupant behavior in smart buildings to re-
duce energy usage in a more accurate fashion has gar-
nered much recent attention in the literature. Predicting
occupant comfort in buildings is a related and challeng-
ing problem. In some smart buildings, such as NASA
AMES Sustainability Base, there are discrepancies be-
tween occupants’ actual thermal discomfort and sen-
sors based upon a weighted average of wet bulb, dry
bulb, and mean radiant temperature intended to charac-
terize thermal comfort. In this paper we attempt to find
other contributing factors to occupant discomfort. For
our experiment we use a dataset from a Building Au-
tomation System (BAS) in NASA Sustainability Base.
‘We choose one conference room for our experiment and
empirically establish the thermal discomfort level for
the room’s temperature sensor. We use various causal-
ity metrics and causal graphs to isolate candidate causes
of the target room temperature. And we compare these
feature sets according to their predictive capability of
future instances of discomfort. Moreover, we establish
a trade off between computational and statistical perfor-
mance of adverse event prediction.

Introduction

Predicting building energy consumption and designing
adaptive schemes for energy savings have been a well-
discussed topic in the literature (Kolter and Ferreira Jr 2011;
Hamdy, Hasan, and Siren 2011; Oldewurtel et al. 2012).
Various techniques based on model predictive control have
shown to improve building energy efficiency (Siroky et al.
2011). However, different occupant behavior can lead to
large disagreement between measured and predicted energy
usage in buildings with same function (Hong 2014). There-
fore occupant behavior modeling in smart buildings has at-
tracted many researchers (Baptista et al. 2014; Dong and An-
drews 2009).

Despite recent developments in occupant behavior model-
ing, predicting occupant comfort (or discomfort) in building
environment is a challenging problem (Dobbs and Hencey
2014; Federspiel, Bridges, and Langkilde 1998; Federspiel
2001). Fanger’s model (Fanger and others 1970) , being
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the most widely accepted thermal comfort model, has been
adopted as part of ASHRAE (American Society of Heating,
Refrigerating, and Air-Conditioning Engineers) 55 standard.
However, determining thermal comfort by Fanger’s double
heat balance equations has its limitations. One example is
the impacts of thermal radiation field on thermal comfort
(Halawa, van Hoof, and Soebarto 2014). In practice there are
discrepancies between occupants’ actual thermal discomfort
and sensors based upon a weighted average of wet bulb, dry
bulb, and mean radiant temperature intended to characterize
thermal comfort (Federspiel, Martin, and Yan 2004).

Figure 1: An aerial photograph of SB building.

A similar scenario occurred in NASA Ames Sustainabil-
ity Base! (SB), a green building that provides a research
testbed for different sustainable technologies and concepts.
The SB (aerial view? in Figure 1) is designed with a Net
Zero Energy objective. One major area of consumption is the
building heating and cooling system. Detailed monitoring of
the BAS is required at regular intervals. SB is instrumented
with 2636 sensors, which perform physical or logical mea-
surements. From Nov 2014 to May 2015 many “cold com-
plaints” were issued by the occupants. A cold complaint can
originate from an anomalous drop in building temperature
or unexpected cool environment in conference rooms in the
morning.

An essential step to eliminating these complaints is to

"http://www.nasa.gov/ames/facilities/sustainabilitybase
Zhttp://www.nasa.gov/centers/ames/multimedia/images/2012
/iotw/sustainability-base-aerial.html
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Figure 2: Data processing steps

identify the contributing factors to occupant discomfort. In
this work we use a few causal discovery methods to solve
this problem in a data driven approach. First, we established
an empirical threshold of a conference-room’s temperature
for representing the associated cold complaints. We call this
room temperature sensor, the “target variable” (x*). Next we
used the sensor data collected from the BAS of the SB build-
ing to learn causal subsets relevant to that temperature sen-
sor. Autoregressive model, Granger causality test and causal
graphs were used as learning models in the experiments.

The causal subsets were then fed to an adverse event pre-
diction toolbox, ACCEPT (Adverse Condition and Critical
Event Prediction Toolbox) (Martin et al. 2015), which pro-
vides a single, unifying framework for comparative perfor-
mance assessment of results from the application of a vari-
ety of algorithmic methods. ACCEPT produces results in the
form of missed detection (false negative), false alarm (false
positive) rate and detection time (the number of time steps in
advance the system can predict an anomalous event), which
are essential in generating our results.

Related Research

A comprehensive overview of many methods to evalu-
ate and predict occupant thermal comfort is presented in
(Olesen 2004; Federspiel, Bridges, and Langkilde 1998).
Lately, various machine learning techniques have been ap-
plied to model thermal comfort. Different human body fac-
tors (blood volume pressure, skin temperature, respiration
rate and skin conductance) and environmental measure-
ments (e.g ambient temperature, humidity, air motion and so
forth) have been used to prediction occupant comfort levels
using correlations and Predictive Mean Vote (PMV) model
(Burzo et al. ). The impact of climate, glazing type, and
shading properties on thermal comfort in an office environ-
ment has been studied in (Bessoudo et al. 2010).

Identifying the more suitable set of features among en-
vironmental, psychological and physiological attributes, to
predict thermal comfort level, have also been attempted
(Farhan et al. 2015). The authors compared Support Vec-
tor Machine (SVM) and Random Forest classifiers with
Fanger’s model and found that the accuracy of SVM classi-
fier was two times higher than Fanger’s model. Kernel meth-
ods have also been applied for thermal comfort forecast-
ing. Locally weighted regression has been shown to provide
more accurate prediction than PMV in (Manna, Wilson, and
Brown 2013). To the best of our knowledge, causal learning
algorithms have not been used to identify the contributing
factors to thermal comfort.

Procedure

The data processing components of our analysis is shown
in Figure 2. Using multiple causal learning techniques we
isolated subsets of features from time series data collected
from the BAS. These feature subsets are used for adverse
event prediction. The performance metrics of prediction are
false alarm rate (false positive rate), missed detection rate
(false negative rate) and the detection time (the number of
timesteps in advance a warning is generated).

In this section we describe the casual isolation methods
and adverse event prediction technique.

Causal subsets isolation

e Granger Causality test, a hypothesis test promoted by
the econometrician Clive Granger (Granger 1969), helps
in determining whether the past values of one time series
can be leveraged in predicting the future values of another.
Hence, this test can be directly used to identify features
with causal relationship with the target (z*).

This causality test is based on a series of F-tests where
each test determines if a feature has statistically signifi-
cant information about the future values of z*. The test
statistic has a F-distribution under the null hypothesis.

For each variable z, the null and alternative hypothesis
for the test are as follows

Hy : x* does not Granger cause z*

H; : z' Granger causes x™.

The linear model according to H; is called unrestricted
(UR) regression model. And the model without z?, as
per Hy, serves as the restricted (R) regression model. The
parameters of these models are learned form the training
data. If the sum of squared residuals of the trained R and
U R models are SSRp and SS Ry R respectively, the test
statistic (F') is defined as follows,

(SSRR — SSRUR)/p

F = (SSRuR) /(N —p - 1)

(1)

where N is the number of observations in training data
and p is the number of variables.

If the value of F' is greater than the critical value of F-
distribution, the null hypothesis is rejected. This critical
value is dependent on the significance level («) of the test.
If the null hypothesis is rejected for z*, it is considered to
Granger cause x*.



o Autoregressive (AR) models are often used in eco-
nomics and for modeling time-varying natural processes
(Kelejian and Prucha 2010; Chakraborty et al. 2012). We
used an autoregressive model of order 7, AR(7), to ex-
press the target as a linear combination of all time-lagged
variables,

?Jt(J) = a{Yt—l + ag}’t—z +F a:yt—r + €§J) (2
= 5TYt—1,t—T + 6?)
where yij ) = 2% is the target, y; € RP is a vector contain-
ing the values of all variables at time ¢ and a; is the cor-
responding weight vector. Y;_; ;—, € RP" and § € RP”
concatenates the variables and weights respectively. To re-
duce non-informative variables we train the model with

a sparsity constraint. Our optimization formulation is as
follows,

T

B = arg minz (y,gj) — Yt—l,t—rﬁ)Q + A8l 3

BERPT

where the regularization norm, L, is chosen to 2. We se-
lect the first £ variables, sorted in decreasing order of the

weights in the trained model ,@ L, as informative variables.

e Causal graph learning We use two causal graph struc-
ture learning algorithms: PC and GES. Both are widely
used methods and theoretically correct.

PC (Spirtes and Glymour, Social Science Computer Re-
view, 1991) is a pattern search algorithm for which the input
is an acyclic causal structure. The input dataset should be
either entirely continuous or entirely discrete. When the in-
put dataset is continuous, the causal relation between any
two variables is linear and the distribution for each variable
is Normal. The PC algorithm sometimes outputs double-
headed edges on a large sample limit. This indicates that
the adjacent variables have an unrecorded common cause.
PC algorithm constructs the graph structure based on con-
ditional independence relations in the data. For continuous
datasets, PC algorithm uses tests of zero correlation or zero
partial correlation for independence or conditional indepen-
dence respectively.

The GES algorithm is a stable greedy equivalency search
algorithm that runs under the same input assumptions as the
PC algorithm but the output patterns are always the same.
The GES is a score based algorithm. It scores all possi-
ble orientations of edges between variables, and higher the
score, the better the approximation should be. The penalty
discount, the parameter given to the GES algorithm affects
which edges are discarded. The higher the penalty discount
the more robust an edge must be to remain the output graph.
One variation of the GES algorithm is the iMAGES algo-
rithm which runs the GES algorithm on all datasets multiple
times, with increasing penalty discounts, until there are no
three-variable cliques left in the graph.

Adverse Event Prediction

Adverse event prediction is the process of identifying po-
tential adverse events in a system before they occur. This

is necessary for situations where an adverse event can be
problematic or fatal. By selecting informative features, pre-
diction can occur within a reasonable time horizon of an
actual adverse event so that mitigating action can be taken
to stop the adverse event from occurring. Hence, we use the
ACCEPT (Adverse Condition and Critical Event Prediction)
Toolbox (Martin et al. 2015) to perform this prediction.

In ACCEPT, all data is preprocessed and filtered. In
Fig. 3, the regression toolbox contains multiple regression
techniques as support vector regression (SVR), k-nearest
neighbor regression (k-NN), linear regression (LR), bagged
neural nets (BNN), extreme learning machines (ELM), etc.
We use LR and ELM in our experiments. ELM is similar to
a single layer feed-forward neural network with one differ-
ence that the input layer parameters are assigned randomly.

ACCEPT employs an unsupervised machine learning ap-
proach for its architecture, meaning that no labeled data is
used to supervise the process of model learning. As such,
all training data associated with the regression step is by
definition nominal data. Anomalous data is reserved solely
for validation and testing purposes, and does not influence
the model characterized by the regression step described
above. In this way, two distinct classes of machine learn-
ing algorithms, regression and classification, are employed
within ACCEPT. Classification methods based upon hypoth-
esis tests are used to determine if any novel, anomalous data
is out of family with respect to the regression model charac-
terizing the nominal training data.
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Figure 3: Architecture of ACCEPT.

The results of ACCEPT contain the false alarm rate, the
missed detection rate and the detection time. Here, the detec-
tion time is defined as the number of timesteps in advance
a warning is generated. By utilizing these metrics we can
compare the different causal learning techniques.

Experiments and Results
Data and Methods

Our data set consists 26,493 samples (Nov 2014 to Feb
2015) from 2,636 sensors of the BAS of NASA SB building.



| Type of Sensor | Number of sensors |

Temperature 273
Current 191
Valve 201
Set point 267
Others 581

Table 1: Feature categories in the NASA SB dataset

These sensors measure various physical and logical quanti-
ties (such as room temperature, humidity, pressure in flow
pipes, status of heat pump, etc) and record in 5 minutes in-
terval. A brief categorical description of the features is pre-
sented in Table 1.

As a preprocessing step of our experiments, we centered
and scaled every sensor data to make the mean O and vari-
ance 1. We used 60% of total samples for training models,
10% for validation and 30% for testing.

While training autoregressive model, we observed that
strong correlations exist among room-temperature sensors
measurements. As temperature in different rooms is con-
trolled by a central heating-cooling system, similar varia-
tions exist in multiple room-temperature sensors. Thus for
proper causal discovery, we removed all temperature sen-
sors, except the target, from the dataset.

In the first set of experiments we isolate the causal subsets
using the previously described methods. A summary of all
subsets is presented in Table 2. Next we establish an empir-
ical comfort threshold for the target variable. Finally we use
ACCEPT to compare the predictability of the causal subsets
in forecasting adverse events of the target variable.

Causal subsets isolation

e GC test Using significance level a = 0.005, we perform
the F-tests for every feature in the dataset. We construct a
causal subset by including all features in GC'es for which
the null hypothesis was rejected.

Moreover, we sort the features in GCe according to their
deviation from the critical value of F-test and choose the
top features as candidate causes. The subset with top &

features is denoted as GCE .

e Autoregressive model training First, we train an AR(1)
model with x* as output and all sensors in the dataset as
inputs. Due to rank deficiency of the training data ma-
trix, we add a small ridge penalty (\) on the parameters.
We compare this model with an AR(1) model trained with
tuned A. The tuning is performed in a separate validation
set.

Figure shows the predictions of these two models. Clearly,
the trained model with tuned A shows superior perfor-
mance than the small A counterpart. We use the model pa-
rameters of the tuned to select informative variables from
the dataset. As all features are in the same scale (part of
pre-processing), we select k informative variables as the
top k features, sorted in descending order of the parameter
values. The denote this set as C% Fridge-

e Causal graph learning We use PC and GES algorithms
to learn causal graph over the variables in the dataset.
As the computation time of structure learning with large
number of features is very high (Figure 8), we attempted
to learn causal variables with all features and a subset of
informative variables. For the first case, we denote the
identified causes as Chdlors. And the causes identified
from a graph learned over k informative variables are de-
noted by Chr/ges-

For the PC algorithm, we used Gaussian conditional in-
dependence test with significance level o« = 0.01. And
the score function for GES algorithm was Bayesian Infor-
mation Criterion (BIC). We found that the graph structure
changes significantly with increasing number of features
fed to the structure learning algorithm. Thus the set of
identified causes does not always grow with increasing
features, i.e

O ¢ Oz ¢ O for any ki < kg < p. 4)

Empirical discomfort threshold

An empirical approach was taken to determine the ground
truth for the cold complaints prediction scenario. We es-
timated the distribution of the target room temperature
sensor (z*) and found that it was a unimodal distribu-
tion with mean 71.7 and standard deviation 1.8. Hence,
a 95% confidence interval around the mean corresponds
to 68.1°F and 75.3°F. Considering this range as nomi-
nal room temperature values, we established 68.1°F as
the upper threshold for cold regions. In our problem, we
are only concerned with anomalous drops in temperature.
Thus, we considered any temperature value below 68.1°F
as an adverse event (cold). And there are multiple adverse
events as shown in Figure 4.
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Figure 4: Cold and warm temperature regions according to
empirical analysis.

Comparison using ACCEPT

The goal of this experiment is to compare the performance
of causal subsets in predicting adverse events of the target



Number of | Identification
Feature Set (1) features |F| ethod
Granger
GCly, GRS, GO 5,10,20 | causality
test
C,54R ridge”
c10 - ' iy 156 AR model
01240R ridee” 20, with ridge
Altridge? 100 penalty
CAR+ridge
Cs » Cbis Céis 3,1,6 | GES algorithm
Che» Cpl . CR 3,1,6 PC algorithm
CH, CEL?, Ot 6,7,6

Table 2: Descriptions of all feature set
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Figure 5: Comparison of Extreme Learning Machine (ELM)
and Linear Regression (LR) models.

based on the derived empirical threshold. As ACCEPT is

False Missed Det'ection
Rate (%) Rate (%) utes)

GC3, 24.20 0.00 102.50
GO 24.20 0.00 102.50
GC2Y 24.20 0.00 102.50
C’jR+ﬁdge 22.00 0.00 97.50
clo ridge 21.00 0.00 97.50
C’fﬁﬂﬁdge 21.55 0.00 97.50
c}ggﬂidge 13.38 1.90 100.00
Cégs 25.27 0.00 102.50
C&% 2.44 0.48 100.00
CEs 7.86 0.00 102.50
Che 8.28 0.00 52.50
CR 8.28 0.00 52.50
CE 5.20 0.00 52.50
Cp0 14.54 0.95 97.50
cr/? 2325 0.00 | 100.00
chll 23.14 0.00 100.00

Table 3: Results for all causal subsets

designed to train models only using continuous features, the
discrete features are discarded from each causal subset.

First we compare the linear regression (LR) and extreme
learning machine (ELM) models, as part of ACCEPT’s re-
gression toolbox, in terms of false alarm rates and detection
times. Missed detection rates are very small in all cases and
thus omitted. Figure 5 shows the comparison prediction re-
sults for one feature set from each identification method. We
observe that in all cases, ELM model performs similar or
better than LR model. Hence, for the next experiments we
exclusively use ELM model for regression in ACCEPT.

Table 3 shows the results for all causal subsets produced
by ACCEPT. There is no subset which achieves minimum
false alarm and missed detection rates which maximizing the
detection time. To comprehend the results we first compare
the subsets form each identification method separately. Then
we make inter-method comparison.

Figure 6 shows results of AR model features with increas-
ing feature set sizes. We see an inverse relation between
false alarm rate and detection time. Moreover, with small
increase in detection time C}% tridge achieves significant de-
crease in false alarm rate. Hence we can conclude that the
causal subsets (of AR model) with higher size have superior
predictability of adverse events.

There is no change in prediction performance of GCJ:;'
subsets with increasing size (Table 3). However CLFA ridge



achieves lower false alarm rate than GCJCI;' with approxi-
mately similar detection time. Hence the AR model in supe-
rior to Granger causality test for this problem.

Small variation in the false alarm rates is seen for Cfpq
subsets. In contrast significant variations in all three metrics
can be observed for Ck. features. Figure 7 compares the per-
formance of these causal subsets. The best trade-off between
the three metrics is accomplished by C30.

Although CE. subsets do not grow monotonically with
increasing k, we observed that there are one or many over-
lapping features among all subsets. This indicate high sig-
nificance of these overlapping features in affecting thermal
discomfort.
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Figure 6: Comparison of ACCEPT results for CL‘F}% ridge fea-

tures.
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Figure 7: Comparison of ACCEPT results for causal features
identified by the PC algorithm.

Trade-off between computational and statistical
performance

We observed that the training time in ACCEPT increases
non-linearly with increasing number of features. In the pre-

vious comparison we observed superior performance from
causal subsets identified by AR model and the PC algorithm.
Also we seen large feature sets are required for low false
alarm rate by AR model subsets. Here the computational
cost of adverse event prediction using these subsets is dom-
inated by ACCEPT’s run-time.

On the contrary, causal subsets isolated by the PC algo-
rithm do not grow with increasing features in the dataset.
Thus the computational cost, in this case, is dominated by
PC run-time. Figure 8 compares the run-times of causal sub-
set identification and adverse event prediction combined, for
increasing feature set sizes. In both ACCEPT performs pre-
diction. We observe that both grow super-linearly. However
the run-time of “AR + ACCEPT” is a few-order magnitude
higher than the “PC + ACCEPT”. Although AR model’s
causal features exhibit more stable statistical performance,
they demand much higher computational time. Thus we can
conclude that a good trade-off between computational and
statistical performance can be achieved using the PC algo-
rithm.
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Figure 8: Runtime comparison of causal subset identifica-
tion (PC and AR) and adverse event prediction combined,
with increasing number of features.

Conclusion and Future Work

In this work we presented an alternate approach for identi-
fying contributing factors of occupant discomfort. We used
various causal learning method to isolate candidate causes
associated with a target room-temperature. Empirically, we
established the discomfort level for a conference room and
used the candidate causes to predict cold temperatures in the
room. We found that the candidate causes identified by au-
toregressive model and the PC algorithm explained the ad-
verse events well. However, good trade off between com-
putation time and prediction accuracy was achieved by the
PC algorithm. Thus we recommend causal graph learning
approach for occupant discomfort modeling.

Future work will be directed towards using the discomfort
model to design energy efficient schemes for maintaining
occupant comfort in smart buildings.
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